
White Matter Hyperintensities and Implications for Future Altitude Chamber Research

International Congress of Aviation and Space Medicine 2018, Bangkok, Thailand

Thursday 15th November 2018

Dr Des Connolly

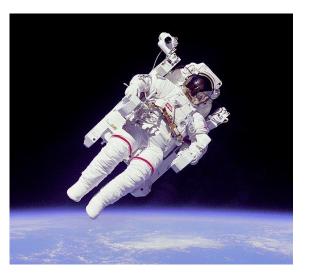
Disclosure Information

Author's Declaration:

• I have not received Non-governmental or non-academic support or funding for the material which I intend to present.

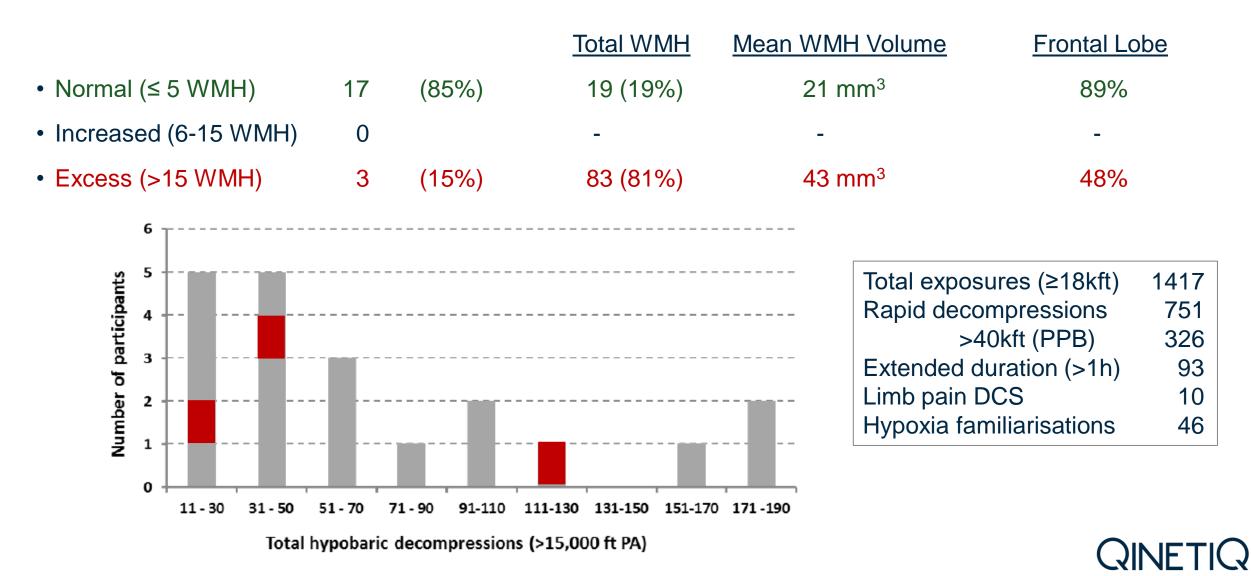
1 Background

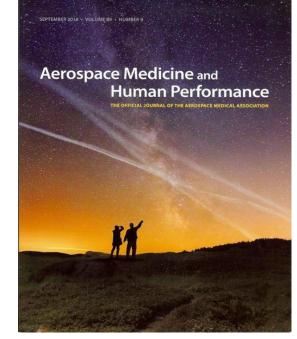
- 2 Brief review of UK study outcomes
 - Retrospective survey
 - Prospective study
- 3 Composite MRI dataset influence of mild traumatic brain injury (concussion)
- 4 Implications for future altitude chamber research at QinetiQ



Background – Dysbaric White Matter Injury

- USAF U-2 Pilots
 - Threefold increased incidence of neurological DCS from 2006-2009
 - Increased subcortical white matter hyperintensities (WMH)
 - Decreased global Fractional Anisotropy (loss of nerve fibre integrity)
- USAF Aerospace Operational Physiologists (altitude chamber instructors)
 - Increased WMH burden
- Healthy Divers (mostly military, commercial)
 - Increased prevalence of WMH (odds ratio meta-analysis of seven medium/high quality case-control studies, P < 0.001)
- NASA Astronauts
 - Increased WMH burden?
- Environmental stress
 - Non-hypoxic decompression stress (hyperoxic?)
 - Safe ('threshold') levels of exposure unknown




Retrospective Survey of Research and Training Participants

Interpretation of Retrospective Data (N = 20)

No association of WMH with altitude exposures:

- Total exposures
- Rapid decompressions +/- pressure breathing
- Hypoxia familiarisations at 25,000 ft
- Episodes of limb pain decompression sickness
- Prolonged exposures (>1h)
- Exposure intensity (decompressions per month)

2018; 89(9): 777-786

'Low intensity' decompression stress is sub-threshold for generating WMH (i.e. relatively infrequent, brief exposures)

Prospective Study - Ethics Dilemma (2015)

- No demonstrably 'safe' decompression exposure limits
 - Plan multiple varied exposures to maximum 40,000 ft

Duty of care to volunteers – do no harm

- Cannot document absence of harm unless perform 'exit' MRI
- If perform 'exit' MRI then must have comparison 'entry' MRI
- If do 'entry' MRI then what about pre-existing WMH?
- Required MRI exclusion criteria (number/volume)
- Additional mitigations:
 - Upper age limit 45 years
 - Limit exposure frequency (max 2 per week at 3-day intervals)
 - Minimise duration of each decompression
 - Conservative denitrogenation schedules

(In effect, minimising risk of decompression sickness)

Outcome of 'Entry' MRI Screening (N = 13)

- 12 (92%) passed screening criteria (≤ 5 WMH with total volume ≤0.08 mL)
- Single exclusion with total 63 subcortical WMH with total volume 2.38 mL
 - Past history consistent with likely Mild Traumatic Brain Injury (MTBI)
 - Slipped on ice, fell backwards, hit head on concrete surface, immediate loss of consciousness
- N = 11 study participants
- 9-month work programme Feb Nov 2017

Altitude Exposures Completed (\geq 18,000 ft)

	Subjects					Inside Observers						
Altitude Profile	S1	S2	S3	S4	S5	A1	A2	A3	A4	A5	A6	Totals
Hypoxia training @ 25 kft	1	1	1	1	1	1	1	1	1	1	1	11
18 kft steady (≤ 20 min)	2	2	2	2	2	3	2	2	3			20
40/25/18/8 kft steady (≤ 6 min each)	5	6	5	5	5	5		5	6	5	5	52
24 to 35 kft slow (1 kft / min)	6	8	6	6	6							32
8 to 25 kft rapid decompression (4 s)	6	6	6	6	6							30
9 to 40 kft rapid decompression (4 s)	3	3	3	3	3							15
Total Exposures ≥18 kft	23	26	23	23	23	9	3	8	10	6	6	160
Exposures to <10 kft			1			11	13	14	15		2	56
Grand Totals	23	26	24	23	23	20	16	22	25	6	8	216

MRI Entry / Exit WMH Data (University of Maryland)

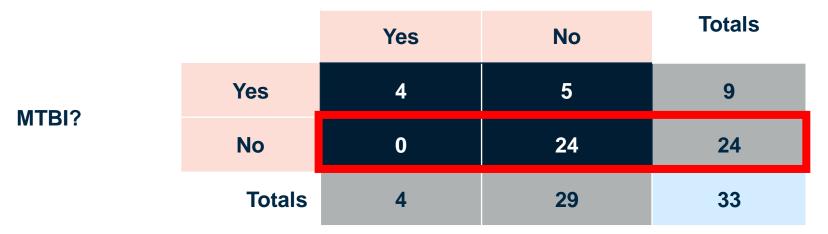
Total subcortical WMH number

MRI	S1	S2	S3	S4	S5	A1	A2	A3	A4	A5	A 6	Total
Entry	0	1	0	0	0	1	1	2	0	3	0	8
Exit	0	0	0	1	0	3	0	0	0	0	1	5
Change	0	-1	0	+1	0	+2	-1	-2	0	-3	+1	-3

Total subcortical WMH volume (mm³)

MRI	S1	S2	S 3	S4	S5	A1	A2	A3	A4	A5	A6	Total
Entry	-	26.1	-	-	-	74.2	9.2	18.4	-	38.4	-	166.3
Exit	-	-	-	10.8	-	159.2	-	-	-	-	13.8	184.0
Change	0	-26.1	0	+10.8	0	+85.0	-9.2	-18.4	0	-38.4	+13.8	+17.7

Interpretation of Prospective Data (N = 11)


Subcortical WMH number	0	1	2	3
Entry	6	3	1	1
Exit	8	2	0	1
Change	Increase	Decrease	Decrease	No change

- Interpreted as 'no change' in underlying normal WMH burden
- Satisfies duty of care: 'no harm'
- May reflect limit of reproducibility inherent in high resolution MRI technique or reporting of transient white matter change in normal life

Composite MRI Dataset – Influence of Past MTBI (N = 33)

• History of concussion consistent with mild traumatic brain injury (MTBI)

Excess (>15) WMH?

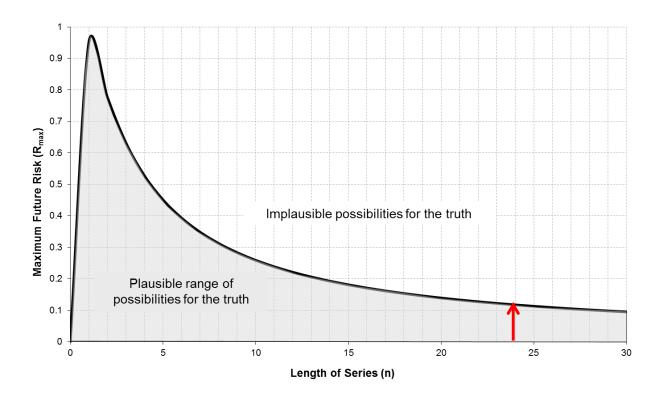
2 x 2 contingency table: Fisher Exact Test (χ²) statistic = 0.0031
MTBI "no" Sensitivity 100%

Negative predictive value 100%

(statistically significant at $\alpha = 0.05$) = 4 / (4 + 0) = 24 / (24 + 0)

Zero Numerators i.e. If Nothing Goes Wrong, Is Everything All Right?

• The maximum risk (R_{max}) for which a finding of zero numerators from a series (*n*) is compatible to a 95% confidence limit (*P* < 0.05) is given by:


 $(1 - R_{max})^n = 0.05$

So:
$$R_{max} = 1 - 0.05^{(1/n)}$$

Hanley JA, Lippman-Hand A. If nothing goes wrong, is everything all right? Interpreting zero numerators. JAMA 1983; 249(13): 1743-1745.

For n = 24:

The 95% confidence limits are 0 - 0.11The 99% confidence limits are 0 - 0.18

Maximum future risk for zero numerators in a series (95% confidence limits shaded)

Way Forward?

MINIMAL RISK

Brief exposures (< 1h)

Infrequent exposures (max 2/week)

Recovery time 3 days +

Limited total exposure burden (<25 ascents) Low risk DCS (altitude, duration, activity, pre-ox) 'Research' (conservative) profiles

No requirement for exit MRI Entry screen by questionnaire for MTBI (and other predisposing factors)

UNKNOWN RISK

Prolonged exposures (> 1h) Frequent exposures (and 'bounce' profiles) Shortened recovery times (1-2 days) Cumulative exposure (>25 ascents) Increased risk DCS (esp long duration, exertion) 'Operational' profiles (e.g. to assess DCS risk)

Requirement for exit MRI Requirement for entry (screening) MRI

What do these studies add?

- Basis for conducting small/medium altitude research projects without requirement for screening MRI:
 - Programmes that present negligible or low risk of decompression sickness
 - Using young (UK) volunteers (<50y)
- Help to establish a *minimum* 'safe' threshold level of hypobaric exposure (cumulative dose, exposure duration, exposure frequency, recovery time) below which white matter injury should not occur.

Caution

- This reassurance does not extend to:
 - Exposures presenting greater decompression stress (altitude, duration, exertion, compromised pre-breathe)
 - Exposures intended to study risk of decompression sickness:
 - Frequent, repetitive or 'bounce' profiles
 - Prolonged exposure at provocative altitudes, especially with physical exertion
 - Occupational cohorts (exposed repeatedly to decompression stress on an indefinite basis)

Acknowledgements

- NATO Research Technology Group RTG-274
- United States Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Dayton, OH
- Centre for Brain Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Sir Peter Mansfield Imaging Centre, Queen's Medical Centre, University of Nottingham, UK
- Defence Science and Technology Laboratory, Ministry of Defence, UK
- Royal Air Force Centre of Aviation Medicine, RAF Henlow, Bedfordshire, UK
- Colleagues at QinetiQ plc

COMMERCIAL IN CONFIDENCE

Questionnaire Screening for MTBI

- Have you ever suffered a head injury that resulted in:

- Loss or disturbance of consciousness?
- Loss of memory for events before or after the event?
- Persistent symptoms of concussion (e.g. headache, nausea, difficulty concentrating etc)?
- Attendance at hospital for imaging (e.g. MRI or CT scans)?
- Admission to hospital (e.g. for overnight observation, sedation or surgery)?

