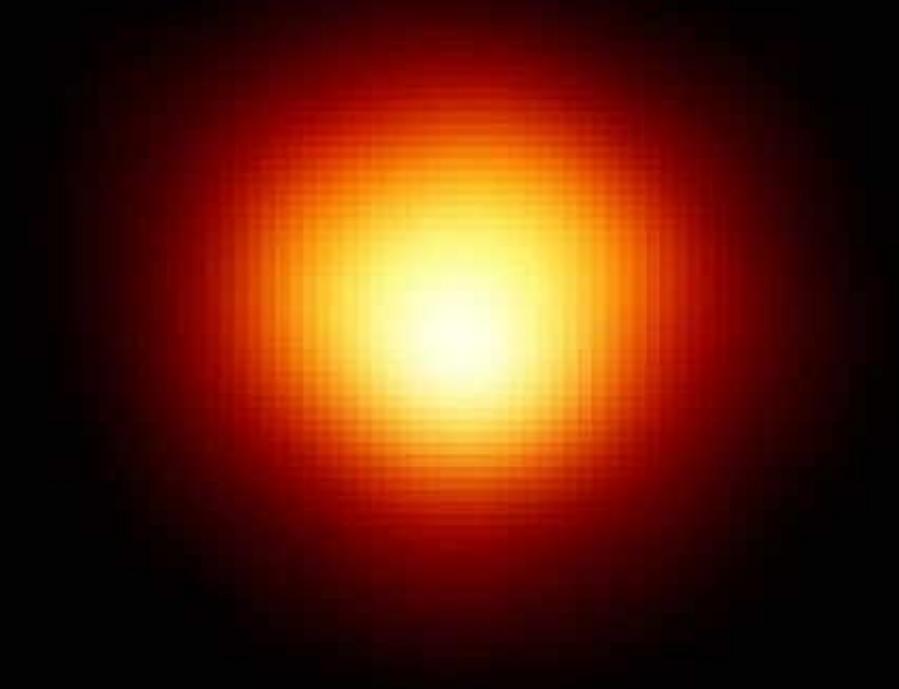
				* * *
				160
				-
⊕ ⊕.				
				(B)
	* (6)			
W. 1 1 1 1		(4)	+++	
		10		



APOPHIS

APOPHIS

Getting to Mars: Comparison of Proposed Launch Vehicle Effects

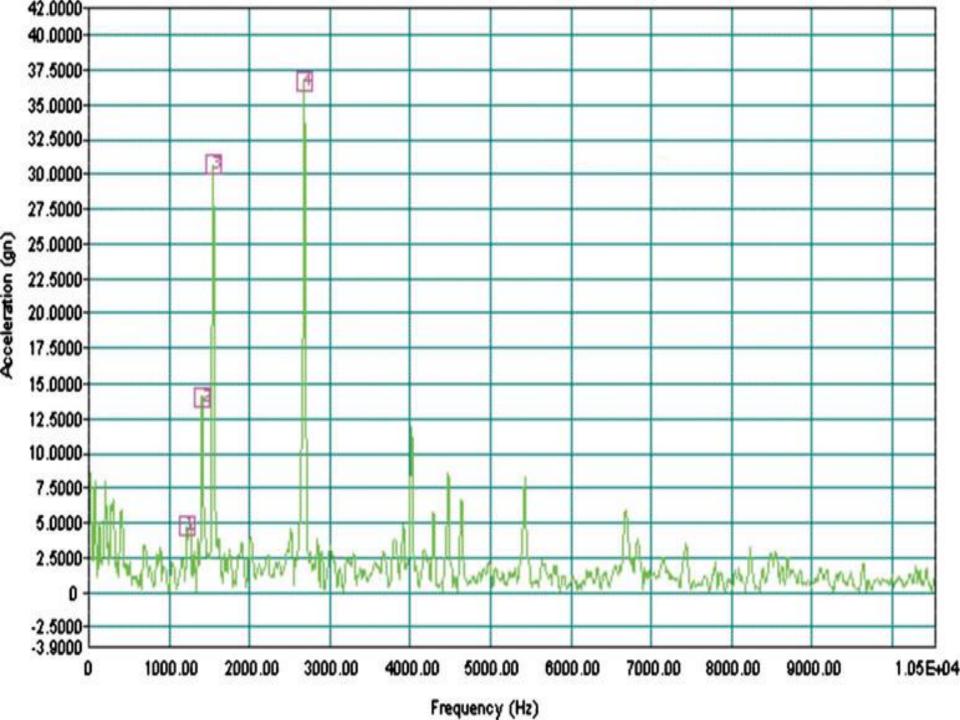
- u G Launch Profiles –
- Vibration Profiles –
- Additional Considerations -

VIBRATION

Human Vibration Limits:

- u Max allowable by ISO 2631 is 0.8Gs
- u Typically this will be at 5-50 Hz

Vibration Physiologic Effects


- u Within ISO guidelines (whole body):
- u Headaches
- u Muscle spasm- minor strain

- u Over exposure:
- u TBI
- u Vascular intimal injury
- u Clinical Musculoskeletal injury
- u Renal epithelial injury

Common Comparison Sources:

- Roller Coaster: 0.1-0.8 G vibration (5-200 Hz) superimposed upon a primary background of minimal minus to plus 6 G sinusoidal/periodic accelerations. (wooden has most vibration)
- u Jack Hammer: 5-25 M/s/s (0.5-2.7 G)
- u Subway: 60 VdB (0.01 0.3 G)

Falcon 9 Launch

FALCON 9

- u G load profile of 6 8.5 Gs along the longitudinal axis.
- Acoustic vibratory profile of 0.5-0.9 Gs spread across a 5-100 Hz spectrum with lateral vibrations of 0.5-0.6 Hz
- u Duration of 500 seconds

Falcon 9 vs Heavy

CAPABILITIES & SERVICES

SpaceX offers open and fixed pricing for its Falcon 9 and Falcon

Heavy launch services. Modest discounts are available, for contractually committed, multi-launch purchases. SpaceX can also offer crew transportation services to commercial customers seeking to transport astronauts to alternate LEO destinations.				
PRICE	FALCON 9		FALCON HEAVY	i sk sk o
STANDARD PAYMENT PLAN (2018 LAUNCH)	\$62M Up to 5.5 mT to GTO	5 P	\$90M Up to 8.0 mT to GTO	5 P
DESTINATION	PERFORMANCE*	4	PERFORMANCE*	4
LOW EARTH ORBIT (LEO)	22,800 kg 50,265 lbs	E	54,400 kg	
GEOSYNCHRONOUS TRANSFER ORBIT (GTO)	8,300 kg 18,300 lbs	×	22,200 kg 48,940 lbs	×
PAYLOAD TO MARS	4,020 kg 8,860 lbs	\mathbb{V}	13,600 kg 29,980 lbs	
		GW44		GIENA SIENA SIENA

Falcon Heavy – Engine View

Flacon Heavy – Launch (sim)

Vibration Terms

F = force

m = mass

a = acceleration

g_{rms} = the rms value of acceleration in units of gravity

D = peak to peak displacement

 $\Delta f = \text{bandwidth in Hertz}$

V = velocity

g²/Hz = acceleration density

f = frequency in Hertz (Hz)

g = the acceleration of gravity

Vibration Equations

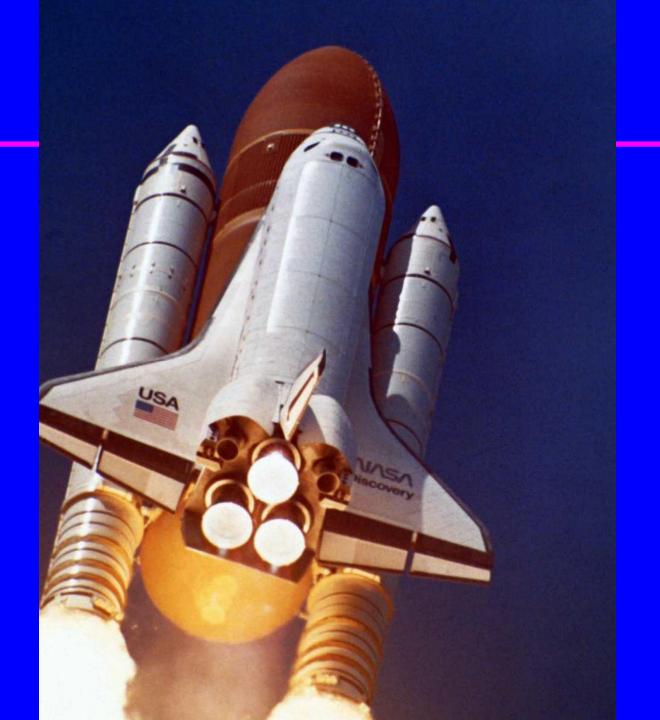
Sinusoidal Vibration

	Velocity, Acceleration and	d Di	splacement Relat	ionships		
English			Metric			
$V = \pi fD$			$V = \pi f D$			
$V = 61.48 \times g + f$	D = inches peak to peak		V = 1.56 X g ÷ f	D = meters peak to peak		
$g = 0.0511 f^2 D$	V = inches per second		$g = 2.013 f^2 D$	V = meters per second		
g = 0.016266Vf f	f = frequency in Hertz (Hz)		g = 0.641 Vf	f = frequency in Hertz (Hz)		
$a = 0.102Df^2$	g = 386.1 inches/second ²		$a = 4.026Df^2$	$g = 9.80665 \text{ meters/second}^2$		
D = 0.3183 X V ÷ f	a= inches/second ²		D = 0.3183 X V ÷ f	a = meters/second ²		
$D = 19.57 \times g \div f^2$			$D = 0.4968 \times g \div f^2$			

Constants for True Sine Waves		
rms value = 0.707 X peak value	peak value = 1.414 X rms value	
rms value = 1.11 average value	peak value = 1.57 X average value	
average value = 0.637 X peak value	peak to peak = 2 X peak value	
average value = 0.90 X rms value	crest factor = peak value ÷ rms value	

Random Vibration

Acceleration, Acceleration Density and Displacement Relationships (For a flat or white noise spectrum) $g_{ms} = SQR \left[\Delta f \left(g^2 / Hz \right) \right]$ $g^2 / Hz = (D \div 42.8)^2 \times f^3$ $D = 42.8 \left[SQR \left(g^2 / Hz \div f^3 \right) \right]$


Falcon HeavyLaunchProfile(est)

u Estimated Maximum Not Greater than:

u 10 G (longitudinal)

u 1.2 G (vibratory) in the critical 5-50 Hz range.

u Dampening techniques could lower vibration to 0.8

RS - 25 SLS - stage 1

u 3 G axial load

Vibration 0.5-0.7 Gs across a 5-100 Hz spectrum

u Duration of 450 seconds.

SLS stage 2 - JX-2 engines

u Unknown profile

u Prior attempts resulted in vibration profile outside the limits of human tolerance

Human limits for vibration: are 0.8Gs at 5-50 Hz which is the most sensitive area of the range.

RS-25 with Falcon 9

- u Although Unknown and Untested,
- Would likely fall within acceptable limits, given the separate components meet the physiological requirements, and these would be employed in series.

However the engineering and logistics of such a combination have not been explored.

Additional Concerns:

u Payload limitations and requirements

u Radiation exposure

u Zero G countermeasures

Payload Limitations:

□ Falcon Heavy – 28 tons to escape

u Saturn V − 50 tons to escape

u SLS-1-45 tons to escape

Payload Requirements:

u Martian Colony – 50-100 tons to Mars

u Crew with return − 28 tons (Zubrin)

u Crew without return - 28 tons (standard)

Conclusions:

- No currently tested and available vehicle meets the ISO vibration requirements for human spaceflight beyond earth orbit.
- The combination of the RS25 as booster and falcon 9 as upper stage would meet the ISO standard, if logistically feasible.
- Although the currently conceived launch vehicles could theoretically accomplish a round trip to Mars, these logistics require further development.

PHYSIOLOGIC CONCERNS

RADIATION
MAGNETIC FIELD
TEMPERATURE
VIBRATION
NOISE

OTHER (Standard Microgravity Effects /Chemical exposures, Psychological, Time in transit, Time Dilation)

RADIATION

Galactic Cosmic Radiation: 0.5 Sv/yr.(with 15 gm/sq cm shielding)

Nuclear Reactor: additional 0.1 Sv/yr.(with 10cm lead or 180 cm of water between reactor and crew)

The MagnetoPlasma Impulse engine would require a 200 MW Nuclear Reactor about 1/3 the size of a typical power plant reactor and 6 times the size of that in a nuclear submarine.

VIBRATION

VIBRATION

- Conventional: 0.56G sinusoidal peak to peak force at 15-50 Hz frequency
- u (Max allowable by ISO 2631 is 0.8Gs)
- u All others are substantially less:

I'M A DOCTOR.

A BRICKLAYER

B.) AN ESCALATOR

C.) A MECHANIC

D.) AN ENGINEER

E.) A COAL MINER

F.) ALL OF THE ABOVE AND THEN SOME

WEIGHT BURNING PARTY AND DESCRIPTION

NOISE

u Conventional: 220 Db

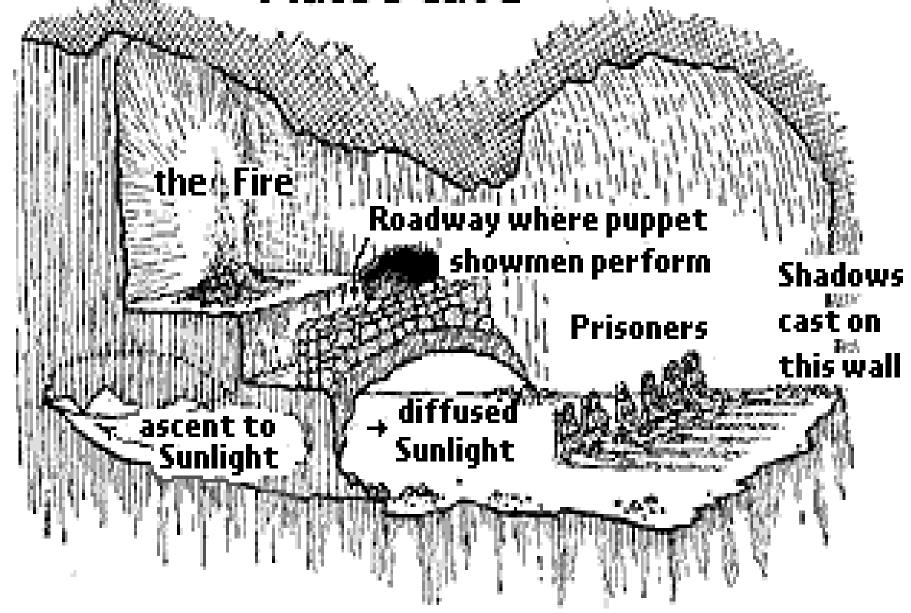
u Solar Sail: <60 Db

u Others in between

TIME

- Transit TimeTime Dilation
- u Gamma = 1/ sq rt of 1- β x β
- where $\beta = v/c$ and v is the relative velocity between two inertial frames.
- u t' = gamma x t.
- u At 0.95 c 1 year= 3.2 years at the ref pt.

ZERO-G CORP


LAST FLIGHT FROM POLE

Plato's Cave

FALCON 9 LAUNCH AT KSC

ORBITAL SCIENCES CORP

u TAURUS 2 Rocket CYGNUS Spacecraft

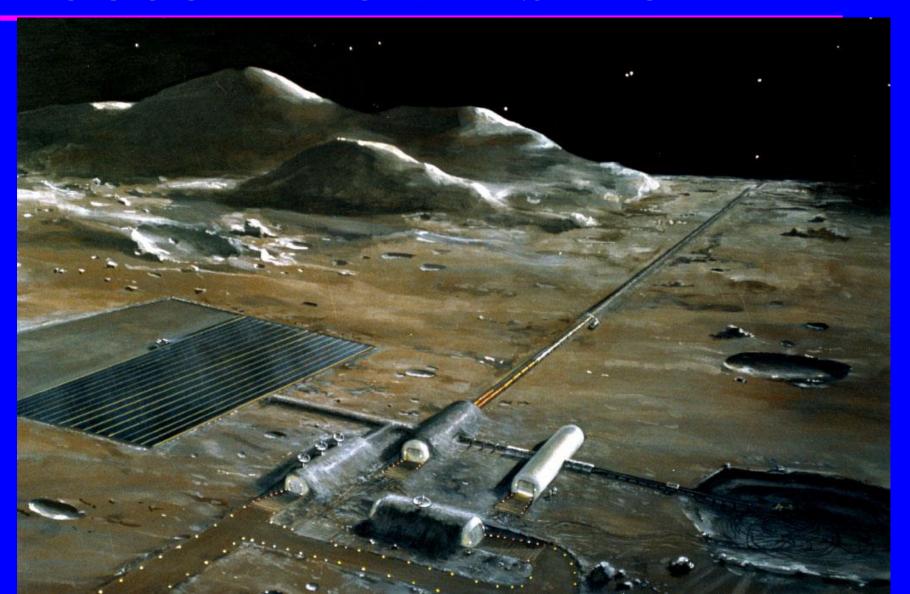
- u Signed 1.9Billion \$ NASA contract for 8 cargo flights to ISS
- u Test Flight at Wallops Island VA in 2011

VIRGIN GALACTIC

- u RICHARD BRANSON (Record Company)
- u Made History with Spaceship one
- u Spaceship 2 will carry 6 passengers
- u Suborbital
- u Launch in 2011/12 from New Mexico

AsMA ROLE

- u COMMERCIAL SPACEFLIGHT WORKING GROUP
- u CREATING MEDICAL GUIDELINES
 FOR PILOTS AND PASSENGERS
- u MEETS AT ASMA ANNUAL AND FALL MEETINGS
- u MARK CAMPBELL is CHAIR mcamp@1starnet.com


THE FUTURE

u HEAVY LIFT ROCKET ENGINE

u HISTORY OFTEN IS KEY TO FUTURE

u EARLY MEDICAL INVOLVMENT IS A PRIORITY FOR MISSION SUCCESS

OCCUPATIONAL SPACE MED

USEFUL REFERENCES

- SPACE PHYSIOLOGY and MEDICINE 3rd Edition, Nicogossian, Lea and Febiger-Publisher Note:
- u FUNDAMENTALS of SPACE MEDICINE, Clement
- u FUNDAMENTALS of SPACE LIFE SCIENCES, Churchill, Krieger Publishing
- AEROSPACE MEDICAL
 ASSOCIATION WEBSITE:

http://www.asma.org/<http://www.asma.or